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SURVEY

In the advanced course which ! have been giving this term, I have been treating
the energy band theory. I had hoped to get further; but it has taken the entire term to
cover the material. This includes just Chapter 1 of the proposed report on "Electronic
Structure of Solids'. Under the circumstances, it has seemed best to include just this
chapter on energy bands in the Technical Report No. 4, and this report, including also
a bibliography of papers on energy bands, is being prepared for the printer, and should
be sent out not long after this Progress Report. I had hoped also to treat the use of
Wannier functions in discussing lattice imperfections and excitons, and various applica-
tions of configuration interaction in solids, including ferromagnetism. Since this ma-
terial was not covered, I shall propose to take it up in a continuation of the same course
in the fall, and shall write the proposed additional chapters of the report on '"Electronic
Structure of Solids' at that time, bringing them out as a further Technical Report No. 5
at a later date.

This course on the theory of energy bands has furnished an occasion for exam-
ining the relative merits of the various methods in current use for studying ene:gy
bands. The conclusion to which we have been led is that the orthogonalized plane wave
method, perhaps modified to Herman's "augmented orthogonalized plane wave method',
is the most promising method at present for accurate numerical work. Parmenter's
attempt to apply the tight binding approximation accurately to chromium has shown the
almost impossible complexity to which that method leads when we try to apply it accu-
rately; the orthogonalized plane wave method seems clearly simpler. Parmenter ac-
cordingly is looking into ways of applying this method to chromium. =

The great drawback of the orthogonalized plane wave method is that it is not
readily adaptable to values of the propagation constant other than a few special points
in the unit cell, such as the center of the Brillouin zone and a few other points. The
reason is that at these symmetry points, a number of plane waves must have identical
coefficients, so that the number of distinct coefficients is relatively small, even for a
sum of a large number of plane waves, and we do not face a very difficult secular equa-
tion. A method of interpolation between these symmetry points is highly desirable.

With this in mind, it occurred to me that the tight binding approximation might furnish
a good interpolation method, if the various integrals which occur in it were regarded as
disposable parameters, rather than quantities to be calculated from wave functions and
potentials. Dr. Koster and I have been examining this possibility, and it seems very
encouraging. In particular, we have carried through a study of the diamond lattice,
fitting the points determined by Herman by the orthogonalized plane wave method, and
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(SURVEY)

our solution, which describes both the valence and conduction band, seems very likely
to be rather close to the truth. We find that we can get this fit by using only nearest \
and second nearest neighbor interactions, and including no three-center or overlap in-
tegrals; there are enough rernaining integrals to use as disposable parameters. For-
tunately, the integrals derived by fitting Herman's values have entirely reasonable
values, having the correct signs and relative magnitudes, so that this procedure seems )
entirely reasonable. We are carrying this method further, considering somewhat more
complicated crystals. This work is report partly in the present Progress Report, part-
ly in Technical Report No. 4. We are indebted to Dr. F. Herman, of R.C.A., for
valuable help in this problem; he has also been independently considering the tight bind- '
ing approximation for interpolation purposes.

The work on a two-electron model of ferromagnetism, on which Drs. Statz and
Koster and I have reported in the two preceding Progress Reports, has been written up
for submission to the Physical Review. Drs. Statz and Koster give in this Progress
Report a two-dimensional model, coming a little closer to the truth than the one-dimen- '
sional model which I presented in the preceding Progress Report, and which is partly
incorporated in the Physical Review paper. As for future work on this theory, we feel
that we want to get closer to the actual structure of a ferromagnetic metal, such as
nickel, and this demands knowing something about the Wannier functions and energy
bands. We are delaying work in this direction, on account of the feeling that the tight l
binding interpolation method, which I have just been describing, may well be adapted
to such energy bands, and to the Wannier functions to be formed from them. Dr. Ki-
kuchi, meanwhile, is looking at a very simplified two-atom model, in the hope that he
will find a ferromagnetic ground state which may well have analogies to the ground state ‘
in more complicated systems.

Dr. Pratt continues to work on the problem of antiferromagnetism, which is
one of the most intricate problems which we face. His two communications, anc one of ;
Dr. Koster on an extension of Hund's rule, all have a bearing on this problem, whose ‘
status is something of the following sort. We have examined a number of models; and
the difficulty which arises i{s that there {s a great tendency for a ferromagnetic, rather
than an antiferromagnetic, state to lie lower. This is probably a result of the method 'l
of approximation, but It Lliustrates thc extreme sensitivity of the problem, and the need
of examining it very carefully before we really understand the validity of the various
approximations. In particular, Koster shows that Hund's rule, stating thet the ferro- ‘
magnetic state will lie lower, holds for any case, molecular as well as atomic, in
which our configuration interaction problem is an ordinary spin degeneracy problem
between orthogonai orbitals. i’robably as a result of this, Pratt finds that the model
which he has set up of a triatomic molecule (MnOMn)M has a ferromagnetic state as
its ground state, though we had hoped that we should find an antiferromagnetic ground ]




(SURVEY)

state, and so an explanation of superexchange. We are not satisfied, however, that
this result {s correct, for very likely a much more extensive configuration interaction
is needed to lead to a possible antiferromagnetic ground state.

The writer suspects that the actual situation is the following. He has pointed
out on several occasions that the effective potential energy in which an electron of +
spin moves may be different from that for an electron of - spin: on account of exchange
effects, the electron of + spin has a lower potential energy when it is in a distribution
of charge of other + electrons, and a higher potential energy when surrounded by elec-
trons of - spin. If we then have an antiferromagnetic configuration of (MnOMn)’ *, the
spins on one of the Mn ions (which will certainly all be parallel to each other in the
ground state, by Hund's rule for the Mn ion) will point in one direction, say +, while
those on the other Mn ion will point ir. the other direction, say -. An electronof +
spin, then, will find a lower potential well in one Mn ion than in the other. This will
hold for the electrons of oxygen, as well as for those of the manganese. Thus the elec-
trons of + spin in the oxygen will find themselves effectively in a strong field, pulling
them toward the manganese ion with + spin, while the electrons of - spin in the oxygen
will find themselves in an equal field in the opposite direction. These electrons will be
polarized by these fields, just as if the fields were ordinary electrostatic fields, and
this will reduce the energy of the molecule. A corresponding polarization will not occur
in the ferromagnetic case, for then the electrons of each spin, in the oxygen, will find
themselves etfectively in zero field. The writer suspects that it is the lowering energy
on accolunt of this polarization which stabilizes the antiferromagnetic state.

This picture of the role of the oxygen atoms supplements the remarks made
by the writer several years ago, regarding the alternating potential in which an elec-
tron finds itself, in an antiferromagnetic crystal. It was pointed out that this alternat-
ing potential would split the energy bands apart, the unit cell in the crystal being twice
as great as ordinarily considered, and that in some cases we could well have the lower
band filled, the upper one empty, thus explaining the non-conducting properiies of cer-
tain antiferromagnetic crystals which otherwise would be thought to be conductors.
But this argument by itself does not show why the antiferromagnetic crystal has a lower
energy than the ferromagnetic arrangement. Dr. Pratt reported some time ago on hav-
ing looked into a one-dimensional model of such a system, and he found the ferromag-
netic state to have the lower energy. It now seems likely that the presence of the oxy-
gen is required to stabilize the antiferromagnetic state, in the way described above,
though the splitting of the energy bands would take place just as described earlier by
the writer.

The problem is then simply to find the correct way to describe this polarize
tion of the oxygens. This could be done by a configuration interaction with excited
states of the oxygen atom, but this i{s a notoriously poor way to describe polarization,
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(SURVEY)

from the point of view of convergence. It is much better to modify the wave function,
in the way which Mr. Allen is investigating, using a single determinant made of orbit-
als which are distorted as they would be in the presence of a field. In our case, the
oxygen orbitals corresponding to electrons of one spin would be distorted in one direc-
tion, those corresponding to the other spin in the other direction, so that they would no
lecnger be identical to each other. All this is easier to describe in simple language,
than it is to carry out in detall. For one thing, we are dealing with a singlet state of
the molecule, and we cannot say in any proper way that the spin of one manganese ion
is pointed in one direction, that of the other ion in the other direction; the true wave
function is a combination of wave functions of the two manganese ions, with a variety
of orientations. The process of building up the wave function out of determinants is
extremely complicated, on account of the many electrons involved; it is this part of
the problem that Dr. Pratt is handling by his operator method. Finally, if the sus-
piclons regarding polarization are correct, it may be necessary to use non-orthogonal
orbitals, and the technique for doing this properly, without neglect of the overlap in-
tegrals, which may be the essential feature in the problen., is very complicated. The
problems which Dr. Pratt i{s facing are not so much problems of visualizing the quali-
tative nature of the solution, as those of formulating the solution in mathematical lan-
guage in which we are sure that we are not throwing away the essential terms by mis-
take. A simplified model which he has been considering, sir.ce treating the cases
described in this Progress Report, gives hope for thinking that we are on the right
track in our thinking about the polarization of the oxygen.

The various investigations into molecular structure are progressing. An im-
portant result of our consideration of configuration interaction has been the conviction
that there are very few cases simple enough to handle by a complete configuration in-
teraction. If we use only a partial configuration interaction, it then is very important
to have good molecular orbitals to start with. There are very few cases in the litera-
ture in which really good calculations of molecular orbitals, by a self-consistent
method, have been carried out. Accordingly, Dr. Meckler has considered the possi-
bility of mechanizing the problem of determining self-consistent LCAO molecular or-
bitals, and has found a way to do it on the Whirlwind Digital Computer, which he de-
scribed in the present Progress Report. If this procedure can be actually put into
operation, it might mean an important advance in the problem of finding molecular
orbitals.

The mechanization of the calculation of the integrals needed for the water
problem, by Koster and Schweinler, is proceeding. This calculation, Meckler's on
ethane, Kaplan's on ammonia, Barrett's on fluorine, and Corbato's on HF, all tie in
together in the calculations of integrals, and general procedure, and are all progress-
ing, though slowly. Unfortunately the calculation of HF by Mr. Merrifield, reported
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on in preceding Progress Reports, had to be discontinued at a point where it had not
yielded uceful numerical results; a continuation of this progiam is being studied by
Mr. Corbato. Various other somewhat disconnected pieces of work are under way,
as will be evident from the Progress Report.

There has been one change in the personnel of the group since the preceding
Progress Report: Dr. Statz has left the group to join the staff of the Raytheon Manu-
facturing Company. Fortunately, he will still be in the neighborhood, so that he will
be able to join in the general scientific activities of the group. Various other changes
in personnel are in prospect for the summer and the next academic year.

J. C. Slater
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1. A SIMPLIFIED TIGHT BINDING ME1THUD FOR ENERGY BANDS

Among all the methods which have been used for studying energy bands, the
tight binding approximation, or Bloch method, has nne outstanding advantage: it gives
simple analytical formulas for the energy as a function of the propagation constant. It
has compensating disadvantages, however: to carry it through really rigorously, tak-
ing into account all three-center integrals, overlap integrals, and other complicating
features, is practically impossible, as Dr. Parmenter's attempt to apply it to the en-
ergy bands of chromium has shown. It has occurred to the writers, however, that the
method could be extremely useful as an interpolation method, for getting the energy as
a function of propagation constant in a case where accurate values of the energy were
known at certain symmetry points in the reciprocal space. This method has been writ-
ten up in fair detail in the Technical Report No. 4, which will appear shortly, and for
that reason only a sketch of the work so far done will be given in this Progress Report.

Of all methods which have been used up to the present for energy bands, the
orthogonalized plane wave method seems to the writers to be probably the one best
adapted to getting accurate values of the energies. The study which Herman(l) has
made of diamond and germanium gives one the feeling that the results are very reliable;
particularly the indication that the method is converging rapidly as more and more
terms are added to the series {s very encouraging. On the other hand, the orthogonal-
ized plane wave method is not well adapted for calculations except at particular sym-
metry points in the reciprocal space. The reason for this is very simple: at a sym-
metry point, many plane waves must have iaentical coefficients, so that the number of
independent coefficients is far less than the number of plane waves which are being
superposed to get an approximate solution of Schrddinger's equation. Thus, for in-
stance, the greatest number of independent coefficients which Herman used in his study
of diamond was 16, so that he had to solve a 16-by-16 secular equation; but the wave
function in this case was made of 146 plane waves. For a propagation constant not
having special symmetry, we should still need 146 plane waves to get comparable ac-
curacy, but now there would be no special relations between their coefficients, and a
146-by-146 secular equation would be required, which of course would be beyond our
present capabllities.

We are then faced with a situation where we have very good energy values for
certain values of the prcpagation constant, without an equally good way to interpolate
between them. For instance, in the cases of dlamond and germanium mentioned above,
we have values for the center of the central Brillouin zone, and for the boundaries of
the zone along the 100 and 111 Jdirections. It has now occurred to Herman, (2) as well
as to the writers, that it might be possible to use a very much simplified tight binding
method, but to choose the parameters entering into this method, not by direct calcula-
tion from atomic wave functions and potentials, but by regarding them as arbitrary
parameters, to be chosen so as to fit the values which were accurately known. We
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(A SIMPLIFIED TIGHT BINDING METHOD FOR ENERGY BANDS)

might then hope that the solutions of the tight binding problem would give acceptable
interpolation values for the energy. Since we are using the method only for interpola-
tion, we can afford to make simplifications which would be entirely inadmissible if we
were using it for an original calculation: we can disregard interaction integrals between

distant neighbors, we can neglect all integrals except two-center integrals, and all over-

lap integrals. We still keep enough terms, however, to have enough disposable con-
stants to fit the values which we assume known; and of course we must keep such terms
that we have a good hope that the calculation will agree with the correct one to an ade-
quate accuracy.

To illustrate the method, we have made a fairly complete study of the diamond
crystal, fitting our constants to Herman's values. We start with the two interpenetrat-
ing face-centered cubic lattices which form the diamond crystal. We form Bloch waves
from s, Py py. P, orbitals on one of the lattices, and similar waves from the same
orbitals on the other lattice. We have, then, eight Bloch waves, and we set up a secu-
lar equation between these eight function for a given value of the propagation constant.
In this secular equation, we disregard all overlap integrals between atomic orbitals on
different atoms. The matrix components of energy involve integrals of the form

"(r) H ¢b(r - R) dv, where ¢_ and ¢, are two atomic orbitals, (for instance, an s
and a py orbital), Ris one of the displacement vectors from one atom to another, and
H is the one-electron Hamiltonian operator of the periodic potential problem. It is
well known that this integral can be reduced to a sum of integrals of the form [¢_*i t-'.)
V(r - R') ¢b(r - R) dv, where the potential H is expressed as a sum of terms V(r - R')
spherically symmetrical potentials about the atoms located at positions R' to an ap-
proximation which is sufficient for the present purposes. The integral above is a
three-center integral, provided R and R' are different from each other and from zero.
We disregard all such terms, and consider only the two-center integrals where R
equals R or zero. Then our integrals are like those found in a diatomic molecule. We
can simplify them by expanding the ¢'s in terins of functions quantized with respect to
the axis R of the pair of atoms. Thus {f we are dealing with p orbitals, we have po
and pr compnanents with respect to the axis. We have non-vanishing integrals only if
both ¢ - and ’b have the same component of angular momentum about the axis; that is,
if both are ¢, or w, or 6 functions. We have integrals, then, of types which can be
symbolized by the azimuthal quantum numbers of both orbitals (denoted by s or p in
this case), and by the component of angular momentum about the axis (¢ or w in this
case). Such integrals can be denoted in an cbvious way as (ss¢), (spe), (ppe), (pp=),
and depend of course on whether we are dealing with nearest neighbors, next nearest,
and so on; this can be denoted by subscripts 1, 2, etc. It is these various integrals
which we regard as the disposable parameters of the problem.

We have set up formulas for all matrix components of energy, diagonal and

-7~




(A SIMPLIFIED TIGHT BINDING METHOD FOR ENERGY BANDS)

non-diagonal, between the various Bloch functions in terms of these integrals. We
then have, in our case of diamond, an eight-by-eight secular equation between the
Bloch functions. This equation can be easily solved analytically at the required sym-
metry points, and we can get solutions involving nothing worse than a biquadratic equa-
tion along the 100 and 111 directions. We can now try to fit all of Herman's values at
the symmetry points. We find that, using nearest and second nearest neighbors, we
do not have quite enough disposable constants to fit all of these values. However, we
can adjust the constants to fit them all with only small errors. In other words, there
are relations between Herman's values which almost, though not quite, make tnem
compatible with a solution involving only second nearest neighbors. When we do this,
the resulting constants are interesting, in that the integrals for second nearest neigh-
bors come out much smaller than those for nearest neighbors, suggesting that we
really have a convergent process. The integrals for nearest neighbors have the signs
and general magnitudes which we should expect; for instance, (ppw), the interaction
between prw orbitals on the two atoms, comes out considerably smaller numerically than
(ppe), the interaction of po's on the two, as we should expect since the pe's overlap
more.

When we use these constants, we then can get solutions for other points of the
momentum space; we have carried out solutions along the 100 and 111 directions (ex-
cept that we have so far not solved for the states which require a biquadratic equation).
The energies resemble the interpolations which have been used by Herman in his papers,
but differ in some respects; these solutions are given in Technical Report No. 4. The
qualitative behavior of the solutions is as given by Herman. Also the solutions in the
neighborhood of the degeneracies, as in the neighborhood of the three-fold degenerate
states at Kk = 0, have the behavior which we must expect from symmetry, and which
has been described by Shockley. (3)

The method which we have described for diamond will be recognized as essen-
tially equivalent to that proposed by Morita. (4) His formulas for the matrix components
of energy are essentially like ours, except that he does not express his integrals in
terms of our quantities such as (sse¢), etc. He finds his integrals from atomic orbitals
and potentials. We have worked backward from Morita's published values of his in-
tegrals, to see the values which he must have found for the various integrals which we
have determined by fitting Herman's values. In doing so, we have observed what ap-
pears to have been an error of some sort in Morita's integrals. Specifically, he finds
a numerically greater value for his integral which we denote by (ppr) than for (ppe),
contrary to our findings, and contrary to what one would expect from straightforward
calculation. This apparent error in Morita's calculation seems to explain another fea-
ture of his results. He found that the lowest energy in the conduction band, for Kk = 0,
came from an s-like rather than from a p-iike state, contrary to Herman's result. We,

-8-




(A SIMPLIFIED TIGHT BINDING METHOD FOR ENERGY BANDS)

however, have been able to find values of the integrals which not only put the levels in
the same orler as found by Herman, but agree quite well quantitatively with Herman's
results. We feel, therefore, that the doubts about the tight binding approximaticn ex-
pressed by Herman in the reference quoted are not justified.

A different sort of tight binding approach has been carried out by Hall, (5)
though he does not like to adrit that his method is really a tight binding calculation.
He starts with what he calls equivalent orbitals. We can describe these in the following
fashion. We start with tetrahedral directed orbitals on each of the atoms of the crystal,
directed toward the neighboring atom. We then make a symmetric combination of the
two directed orbitals at the two ends of each bond, and call this symmetric combination
an equivalent orbital. We have four such equivalent orbitals per unit cell of the crystal,
so that we can make four Bloch combinations of them. We then can set up matrix com-
ponents of the energy between these four Bloch functions, and can solve a four-by-four
secular equation between them. This secular equation will have four roots, which may
be expected to describe the four levels in the valence band of diamond. It is this secu-
lar equation which Hall has considered.

The results which he has found are not in good agreement with those of Her-

man; in particular, Hall, like Kimball and Hund and Mrowka(b) with the cellular approxi-

mation, finds a doubly degenerate state whose energy is independent of the propagation
vector, whereas Herman finds that the energy of this state is a function of i-x., and it is
split in certain directions; our tight binding calculation agrees entirely with Herman in
these respects. One way of describing this shartcoming of Hall's treatment is that he
takes into account only interactions of nearest neighbors; if he considered more distant
neighbors, he could get a suitable behavior. In fact, Herman‘” has found it possible
to get a good fit with his values by making up equivalent orbitals like Hall's, and using
sufficiently distant neighbor interactions. The interactions must be assumed significant
out to considerably more than the second nearest neighbors, however, which are the
only ones which we need use in our method of fori.ulation, in which we get the conduc-
tion band as well as the valence band from and eight-by-eight secular equation.

One can easily convert Hall's calculation into one equivalent to ours, and it is
tnstructive to see how this is to be done. Just as Hall has set up four Bloch functions
from the symmetrical equivalent orbitals, we could make antisymmetric equivalent or-
bitals, and make four Bloch functions from them. The four-by-four secular equation
resulting from these would give a description of the conduction band. But we should
find that there were non-diagonal matrix components of energy between the four Bloch
lunctions formed from the symmetric orbitals, and the four formed from the antisym-
metric orbitals. These non-diagonal matrix components vanish for Kk = 0, but become
larger as we go out in the Brillouin zone. 1f we now consider all eight of these Bloch
functions, and the eight-by-eight secular equation between them, we can show that it is
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(A SIMPLIFIED TIGHT BINDING METHOD FOR ENERGY BANDS)

equivalent to the problem as we have set it up. We can get satisfactory results in this
case by considering only nearest and second nearest neighbors, while to get satisfactory
results from Hall's procedure we need terms coming from more distant neighbors. The
easiest way to remove the zero-width bands, then, is to consider interaction between
the valence and conduction band. The point is that except at l-c.z 0, the wave functio.'s
of the valence band are not constructed entirely from the syminetric combinations of
orbitals on the two lattices, and the conduction band entirely from the antisymmetric
combination; closer examination of the wave functions shows that the phase difference
between the waves on these two lattices changes from zero or 180°%at k = 0 (for the
symmetric and antisymmetric solutions) to 90° at the edges of the band, a situation
which can be described by Hall's method only with difficulty.

We are examining the tight binding approximation further, and hope to come
back to the relation between it and the Wannier functions for overlapping bands.
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2. ENERGY BANDS IN CHROMIUM

The original plan of calculating electronic energy bands {n chromium, reported
in previous Progress Reports, involved expanding the valence-electronic wave functions
as arbitrary linear combinations of orthogonalized plane waves plus 3d Bloch functions.
Each 3d Bloch function was to be a so-called Bloch sum of 3d atomic orbitals associated
with the isolated chromium atom. In calculating matrix elements of the crystal poten-
tial between two 3d Bloch waves, there arise terms involving three-center atomic in-
tegrals (the one-electron integral of a product of an atomic potential centered on one
lattice site and two 3d atomic wave functiors centered on two different lattice sites).
Because of the difficulty in accurately calculating three-center integrals, the above
scheme is not feasible as it stands.

Let us snppose, however, that the 3d atomic orbitals are modified in such a
way that they vanish at distances greater than one-half the nearest neighbor distance in
chromium. All three-center integrals wil! now vanish, and there will be no difficulty
in calculating matrix elements of the crystal potential. Such a method should be general-
ly useful among the transition elements. It has been suggested by Herman(l) that the
same method (which he calls the augmented orthogonalized plane wave method) should
be more rapidly convergent than the orthogonalized plane wave method alone when deal -
ing with valence crystals (such as diamond) or semiconductors (such as germanium).
With regard to transition elements, the motivation of the AOPW method is to represent
by orthogonalized plane waves that portion of the crystal wave function resulting from
both 4s atomic orbitals and the overlapping portions of 3d atomic orbitals and to repre-
sent by Bloch waves that portion of the crystal wave function resulting from the non-
overlapping portions of the 3d atomic orbitals.

The method to be used in mcdifying the 3d atomic orbitals is more or less ar-
bitrary, of course, but the following method, which has been used on chromium, seems
physically reasonable and probably can be used whenever the AOPW method is applica-
ble. Let us construct an atomic orbital by numerically integrating Schrddinger's equa-
tion with a Hamiltonian containing the crystal potential, the numerical integration start-
ing at any nucleus of the crystal. Since we desire an orbital of definite angular momen-
tum (2 = 2), we must use the spherical average of the crystal potential in Schrodinger's
equation. This spherical average can be approximated by the isolated-atom potential
V(r) for r < R and by the constant V{R) for r > R. The radius R is chosen such that
V(R) = <V(r)>, where <V(r)> is the average value of V(r), averaged over the unit
cell of the crystal. It seems reasonable to take the orbital equal to the isolated-atom
3d orbital for r < R; i.e., we use the energy of the isolated-atom 3d orbital as the
energy used in numerically integrating Schrddinger's equation. For r > R, the numeri-
cally integrated orbital will deviate sharply from the isolated-atom wave function since
the spherical average of the crystal potential is lower than the isolated-atom potential.
This will result in a radial node in the orbital at some value of r which is approximately
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(ENERGY BANDS IN CHROMIUM)

equal to one-half of the nearest neighbor distance in the crystal. (For chromium R =
1. 55 atomic units, the radial node in the numerically integrated orbital occurs at 2. 80
atomic units, while one-half of the nearest neighbor distance is 2. 36 atomic units.) By

cutting off the numerically integrated orbital beyond the radial node, we have formed
a modified 34 orbital suitable for our purposes.

Reference

1. F. Herman, Ph.D Thesis, Department of Physics, Columbia University, January,
1953, p. 40,

R. H. Parmenter
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3. A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM

In the previous two Progress Reports, J. C. Slater.( ) H. Statz, (2) and G. F.
Koster( ) have discussed a two-electron example of ferromagnetism. In this Progress
Report we apply the same methods to a simple two-dimensional case. This case fur-
ther confirms the necessity of degenerate bands for ferromagnetism and also illustrates
some of the techniques which would be useful in a more detailed discussion of ferro-
magnetism.

A two-electron function in a crystal may be expanded in terms of products of
Wannier functions associated with the various energy bands of the crystal.

WELT) = L URL R ) e - Ry, - R ) (3.1)
,),m,n

Here i refers to the band from which the Wannier function ay arises, r, and r are

the coordinates of the two electrons, and R is one of the primitive translylations of the
crystal. We know, however, that the symmetry properties of a wave function depend
only on the invariances of the Hamiltonian and not on the number of electrons the wave
function describes. We expect therefore that all the discussion of the irreducible rep-
(4) (s) will be applicable here. In

particular, we are able to define aLg( &ctor which expresses the fact that our two-

resentations of the space groups by Seitz and others

electron wave function goes into ¢ P times {tself under translation through ﬁ
This allows us to write our U (ﬁ R ) in a simpler form
T & ﬁn * ﬁm
= 2 =
Uij(ﬁn. R)=e FR_-R ) (3.2)

More can be said since we know that our Wannier functions may have certain symmetry
properties. Let us see how this influences our F's. We restrict our attention to l-(. = 0.
(The following arguments could be easily carried out for other K values.) We must
first see what effect some operation a of our point group has on the wave function since
we know that the wave functions for l-(‘ = 0 must form irreducible representations of the
point group of the crystal. It can easliiy be seen that

- - - -l - -
ag(r,, rp) = 1.j§> - Fla™ R )aa(F) - R ) aay(r, - R+ R) (3.3)

Here aat(;) is the Wannier functior. which results from applying the operation a to
ai(;)' a-1 ﬁm is the primitive translation arrived at by applying a”~ o ﬁm. Since we
know the transformation properties of our Wannier functions from Eq. (3. 3) we are

able to get relations between our F(ﬁm)’s. This is most easily seen by a simple example.
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(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM)

Assume that our two-electron wave function is derived from the Wannier functions of a
single non-degenerate band for which ua(x?) = a(r) is true for all a. Let us look for
the twc-electron wave function that forms a completely symmetric representation of
our point group (“'(:l’ ;z) = q;(}’l, :2): for all a). By applying these relations to Eq.
(3.3) we get

- - -1 - -
p,zm F(ﬁm) a(x‘l - -R’p) a(rz - -R’p + Km) = p'zx:n F(a Km) a(x‘l - ﬁp) a(x‘z - Kp + Km)
(3. 4)

therefore F(ﬁm) = F(a~ 1 Km)

The additional symmetry property of our two-electron wave function concerns its value
of total spin. This is determined by the relation

F(-iz’m) =t F(itm) (3.5)

The - sign refers to the triplet and the + sign refers to the singlet.

Let us now apply the prece :ing discussion to a two-dimensional square lattice.
We wish to determine our F's by minimizing the expectation value of a two-electron
Hamiltonian

H=H +H+g, (3.6)

where Hl and Hz are the one-electron Hamiltonians of our two electrons in a periodic
potential and g, is the Coulomb repulsion between two electrons or two holes. We

study first a non-degenerate band for which aa(r) = a(r) for all a of the point group.
This gives rise to the secular equation (Ref. 1, Eq. (1.6))

% ze(itp) F(§n+ iz’p) + a(itn, 0V, = EF(Kn) (3.7)

Here

ER) = [l n, o, -R)

= (aalaa)

v -2 fa(?,) a(r)) a(r) a(r))

o r

12
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(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM)

%42 Tv2 %d1

Fig. 3-1

Square lattice in R - R, space. The figure gives the notation
for the g lattice points and the various ''planes' of reflection.

In this secular equation the assumption has been made that two electrons interact only
when they are at the same lattice site. We zlso assume J(ﬁp) z 0 except for nearest
neighbor interactions. For boundary conditions in relative coordinate space we make
the assumption that F(ﬁn) vanishes on the sides of a square that contains nine lattice
sites. Fig. 3-1 contains a diagram of this region of relative coordinate space as well
as labels for the various iattice points under consideration. Table 3-1 gives the vari-
ous irreducible representations of group C av (the point group of a square lattice). The
o's are reflections through the '"planes' indicated in Fig. 3-1. C 4 s a clockwise rota-
tion through 90° and C, = C,2.

Table 3-1
Character table for the group of the square lattice C

ration 3
E C, CeCy oy %410 %42
Representatio
1
Al 1 1 1 1
-1 -1
Az 1 1 1
= 1 -1
Bl 1 1 1
=} -1 1
Bz 1 1
E 2 -2 0 0 0
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(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM)

We will now discuss in detail one of the symmetries of twc-electron wave
-
functions for K = 0 under the above assumptions. Let us look at those wave functions
with Al symmetry. Using the relation (3. 4) we see at once that

F(1,1)

F(1,-1) = F(-1,-1) = F(-1,1) =.}

F(1,0) = F(0,1) = F(-1,0) = F(0, -1) = g. (3. 8)

F(0, 0)

"
(-]

Substituting these relations into secular equation (3. 7) we find
B -
a(V_ - E)+ -2-(86) + Yi(o) =0
o(28) + g-(-E) +L(48) = 0 (3.9)
a(0) + %(4() + Yi(-f;) -0

therefore

ES - VOEZ - 328% + 163"'vo =0 (3. 10)

Here & is the nearest neighbor interaction (that is, the ma‘rix element of the one-
electron Hamiitonian between a Wannier function at (0, 0) and one at (0, 1)). The equa-
tion (3. 10) can be solved for small & giving the result

2
E =vo+“’$
(o]
.2 (3.11)
E=t4g -8
v
(o]

These states are clearly singlct statcs since F(ﬁn) = + F(- ﬁn). A similar discussion
can be carried out for the other symmetries. First we write down the relations be-
tween the F's which result from the irreducibie representation which we desire and the
symmetry properties of the Wannier functions. We then use these relaticns to simplify
the secular equation (3. 7) and finally we find approximate eigenvalues of the secular
equation if these equations are above ..i1e second order.

For AZ symmetry we find that all the F's must vanish and therefore we cannot
find a state of this symmetrv,
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(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM)

For Bl symmetry we find

F(1,1)

F(-1,1) = F(1,-1) = F(-1,-1) = 0

F(0, 1)

F(0,1) = F(1,0) = -F(-1,0) =% (3.12)

F(0, 0)

0

which leads to the secular equation
a .
E(’El =0 E=0 (3.13)

This is a singlet.
For BZ symnietry we find

F(1,1) = F(-1,-1) = -F(-1,1) = -F(1,-1) = %
F(0,1) = F(1,0) = F(-1,0) = F(0,-1) =0 (3.14)
F(o,0) = 0
This gives rise to the secular equation
a
E('E) =0; E=0 (3.15)

once again this is a singlet.
For E symmetry we have a doubly degenerate wave function. In this case we

set up two wave functions

Y = ZFx(Rm) a(x-'.l - Kp) a(x-"z - ﬁp + Km)

b= LR DalF -R)al, - R+ R
Here ¢x and »py transform as x and y do under the operations of the group of the
square. Once again this gives us relations between the F's
FX(1,1) = F¥(-1,1) = -FX(-1,-1) = -F*(1,-1) = g-
(3.17)
)= P = -FL -0 = Pa,- = £

-17-
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(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM)

FX(0,1) = -FX0,-1) = FY(1,0) = -FY(-1,0) = %
) ( ) (1,0) (-1,0) 7

F*(1,0) = F*(-1,0) = FY(0,1) = FY(0,-1) = 0 (3.17) con'd.

F*(0,0) = FY(0,0) = 0

The secular equation ‘or the x-like functions is

"
(=)

s (-E)+ Plaea)
V2 2 (3.18)

]
(=]

oee) + B(-E
AR

with roots
E=t2/2¢
Thus we get two doubly degenerate eigenvalues {a total of four wave functions). These

states are all triplets (F(ﬁn) = - F(- ﬁn)). Fig. 3-2 contains a graph of energy as a
el

-el &l
Fig. 3-2

Energy as a function of nearest neighbor inter-
action & for the case of non-degenerate bands.

function of &€ for the two-electron states arising from a non-degenerate band. We no-
tice that the singlet state of Al symmetry is the lowest state. The fact that the singlet

lies lower than the triplet we interpret as an absence of ferromagnetism.
We now consider the case of two degenerate bands which we describe in terms

of Wannier functions with x- and y-like symmetry. (6) We will call them a(x-'.) and b(x-'.)
and their symmetry properties are given in Table 3-2.
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(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM)

Table 3-2
Symmetry properties of Wannier functions a and b

Operation b a
b a

C4 -a b
Cz -b -a
€,° a - b
Td1 - b
“az o =D

vl B =
Tv2 =B a

We write our two-electron function as

- -

q;(rl, rz) = ZFaa(Km) a(x-'.l - Kp) a(x?z = Kp + Km)

+

TF (R b(F) - B )b, - R+ R
(3.19)

+

TF (R ) alr, - h’p) b(r, - h’p +R_)

+

LF, (R )b(r, - 'n’p) a(r, - iz’p +R_)

If we assume that there is only interaction between electrons when they are at the same

(1)

lattice site, these functions give rise to the secular equations

% 2¢ a(iz’p) F (R + h’p) + &R _,0) [Faa(O)(aalaa) + be(O)(ablab)] = EF__(R)

% z(b(h’p) Fy (B + Hp) + 8(R_,0) [be(o)(bblbb) + Faa(o)(ablab)] = EF (R )

% [ca(h’p) + & b(iz’p)] F (R + Kp) + 8(R_, 0) [Fab(O)(aalbb) + Fba(O)(ab!ab)] = EF (R )

) [0, + & B)] Fu B+ )+ 8(F,, 0)[F, (0)aalbb) + F,y(0)(ablab)] (= Ep)ba(h’n)
3.20

The secular equations break into two parts, one connecting the Faa and be type two-
electron wave functions and the other connecting the Fab and Fba types. This splitting
is due to our approximation in considerinz interactions of electrons only when they are
on the same lattice site. In what follows we make use of these abbreviations
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(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM)

Vo = (aalaa) = (bbibb) = /a(;l) a(r-‘.z) €2 a(x-'.l) a(x-'.z) drl dr,
J = (ablab) = /a(x-‘.l) b(r-‘.z) g2 a(x-'.l) b(x-‘.z) d*rl dTZ
K = (aalbb) = fa(?l) a(r*z) g, a(r*l) b(r,) dr, dr,

We also make the assumptions that only those Fourier coefficients of the one-electron
energy that represent nearest neighbor interactions are non zero. We call Jl the in-
teraction between an x-like Wannier function and one displaced a unit translation in the
x direction. We call ‘Z the interaction between an x-like Wannier function and one
displaced a unit displacement in the y direction. A new feature comes into this calcu-

lation of the energies of the two-electron functions associated with the degenerate bands.

In this case it sometimes occurs that the symmetry of the wave function is not sufficien.
to determine whether the wave function is a singlet or a triplet. When this is the case
there can be both a singlet and a triplet of the same symmetry. Instead of presenting a
detailed discussion of the many symmetries and multiplicites we present the results in
Table 3-3. The arguments that go into deriving the tabulated results are exactly analo-
gous to those already presented for the non-degenerate band. The first column (I) rep-
resents the multiplicity of the state. The secund column (II) gives the symmetry. The
third column (III) tells whether the wave function comes from the Faa type secular
equations or the Fab type secular equations (see Eq. (3.20)). In the fourth column (IV),
there is listed the secular determ nant and in the final column (V) is listed the approxi-
mate eigenvalues for ‘l and ‘Z small. In this column we have used the abbreviation
that ‘l =c é,.

For the case of a two-electron wave function drawn from two degenerate bands
it is not possible to draw an unambiguous conclusion as to whether the triplet or the
singlet lies lower as one can see from Table 3-3. Of those states in which one electron
is in each band (Fab type), it is clear that the lowest state of AZ symmetry is a triplet

lower than any other state of the Fab type. Of the wave functions in which both electrons

are in the same band (Faa type), the lowest state is a singlet of Bl symmetry. As to
the competition between these two, the lowest one will be determined by the actual
values of the parameters involved. Either one of these two could lie lower. Thus we
see that in the case of non-degenerate bands the singlet lies lower whereas in the case
of degenerate bands it is possible that the triplet may lie lower.
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(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM)

Energies for two-electron states arising from
degenerate bands in a square lattice

v o
4 3 2 2
singlet[A) [ F_ [E"-(V_+J)E -lb(d'l ‘ Jz ,Ez.,(vu,J)(glz, 522)5 Eaved...
2 2.2
] 1-
.6‘(le_6‘zz)z.o .. Jl( C) .
(V el ecd)
2
E-t2/1./C % Jz!. gl‘L?,..
(Vo e ec?)
singlet Az F.. E=0 E=0
4 3 - 2 22,2
singlet[B, [ F__|ES-(v -nE”-160&,%0 &0 .a(vo-J)(gl‘. gz‘);; EsV_-J...
2 2.2
. 82 0 -
voa( 82 o Bt &, -<9
(Vo- JNL ¢ cz)
2
LIS W2 I/ AL AL A S LS.
(v, - e cd)
singlet | B, |F__ £=0 E=0
triplet [E |F__ s-:z,/io'l Eet2 /2,
E=22/2¢, l»:-:z,/i.(,'z
singlet ’\l F’b E=0 E=0
singlet Az Fnb E=0 E=0
triplet (A, 1F s’-s‘(x-J)-s(Jl. d'z)i:ﬂto','Jz)‘(K-J)-o EsK-Jo.
s-:z(6,~Jz)-x‘—_J(gngz)‘....
singlet Bl F.b E:=0 E=0
triplet 82 Fnb E=0 Ez0
singler[B, |, [E2-EXiK ) -8(& 0 £HE 0 &) £tk 0 =0 EsKedo...
2 2
5"‘(51’Jz)‘m(°’|’&’ ‘...
singlet |[E [F E=t /UL &Y E:t /I(&,+ &)
triplet [E [F E-t /&, &) Et /I8, &)
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(A TWO-ELECTRON EXAMPLE OF FERROMAGNETISM)
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4. A SYSTEM OF TWO p ELECTRONS

In connection with the work on the two-electron example of ferromagnetism
developed by other members of the Group, (1) there uccurred a question regarding the
energy levels of a system of two Ni atoms as a function of the internuclear distance;
the reason is that the properties of the pair of atoms might be supposed to give infor~
mation about the ferromagnetic suhstance in bulk.

In order to obtain qualitati re information about this system, particularly
about the multiplicity of the lowest lying state, the problem was simplified several
steps as follows. A Ni atom which has one hole is 3d orbits is first reduced to an atom
with a hole in p orbits, because both d and p levels give rise to degenerate bands.
A hole in p orbits behaves qualitatively similar to an electron in p orbits. Further-
more, the Gaussian type of wave functions may be enough to give the qualitative infor-
mation.

After these considerations, now the energy levels of a system of two atoms
each having one p electron is being calculated using Gaussian wave functions, as a
function of internuclear distance, and taking into account the configuration interaction.

Reference

1. H. Statz, Quarterly Progress Report, Solid-State and Molecular Theory Group,
M.].T., January 15, 1953, p. 23; G. F. Koster, ibid. p. 31; J. C. Slater,
Azril 15, 1953, p. 6.
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5. SPIN OPERATOR METHOD -- APPLICATION TO CONFIGURATION INTERACTION

A detailed account of an operator method of constructing eigenfunctions of SZ
was presented in the last Progress Report. The application of this technique to con-
figuration interaction has proved rather successful and some of the details of its use
will be given here. The following remarks will be largely confined to the treatment of
the Mn** 0= Mn** model of antiferromagnetism discussed elsewhere in the present
Progress Report.

It was shown in the April 15 Quarterly Progress Report that there exists an
operator O when operating on a 2N electron determinant whose Ms value is zero,
produces a linear combination of 2N electron determinants such tha* the resulting state
is a singlet. The only condition imposed was that all the one-electron spatial orbitals
be distinct, but not necessarily orthonormal. It was also pointed out in that Report
that this operator method could be used to set up the matrix components of the Hamil-
tonian between singlets corresponding to different configurations. Suppose P, is a
product function of space-spin orbitals

P, = ul(l) a(l) uz(Z) a(2) ... uN(N) a(N) un . l(N+ 1)B(N+1) ... uzN(ZN) p(2N) (5.1)

of total Ms = 0. Then one of the singlet states that can be formed from this collection
of spatial orbitals is

¢ = AOp, (5.2)

where O is the spin operator and A is the antisymmetrizing operator. The matrix
component of the energy between two configuratiuns for this particular type of singlet

is
<¢, H4,> = <AOp, H AOp,> (5.3)

We now make use of the following properties of the spin operator O: (1) O commutes
with a spin-free Hamiltonian. (2) O commutes with the antisymmetrizing operator A.
(3) The square of O is equal to a constant times O. These properties allow one to
write Eq. (5. 3) as

1/2 <A(ZN) ol2N)

<y IHIY,> = (N + 1) p,HIp,> (5.4)

where p) and p, are spin product functions corresponding to different configurations
and A(2N) ang o(2N) signify that these operators are functions of the coordinates of all
of the electrons.

In the ground configuration of the Mntt 0= mn*? system the orbitals con-
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(SPIN OPERATOR METHOD -- APPLICATION TO CONFIGURATION INTERACTION)

sidered are the five Mn 3d orbitals each singly occupied and the oxyzen 2p orbitals
which arc assuined to hold six electrons. Thus we have a sixteen-electrcn system but

only thirteen distinct orbitals. The object of these remarks is to generalize the spin
operator O in order to handle systems composed of spatial orbitals all of which are
not distinct. By doing this we will be able to cast matrix elements in the convenient
form given in Eq. (5. 4).

In the investigation of the Mntt o= _mn*t system the singlet considered for
the ground configuration was formed by combining two S = 5/2 states made up from the
Mn 3d orbitals to give a resultant ten-electron singlet. The remaining six electrons
were assigned to the three 2p oxygen orbitals. In terms of the spin operaior this six-
teen-electron singlet is written

§ = AU [u (1) a(1) u)(2) B(2) - .. uy(5) al5) uy(6) 8(6) - 01 fu () a(7) ugle) 0(82
5.5)

ugl9) a(9) ... ugl11) a(11) ug(12) B(12) u o(13) B{13) ... u 4(16) pC16)]

where U, Uy, and u, represent the 2p functions and ug through ug are the 3d functions
on one Mn** ion and ug through u,4 are the 24 orbitals on the other Mn'! ion. Anes-
sential point appears here; that is the ten-electron spin operator 0(10) does not com-
mute with the sixteen-elect~on antisymmetrizing operator A(l6). Therefore, unless

this singlet can be set up using the full sixteen-electron spin operator 0(16), the ma-

trix components cannot be haidled as in (5. 4).
Consider a 2N electron system with 2(N - n) distinct orbitals which will be

kept singly occupied and n distinct orbitals which will be doubly occupied. The or-
bnials may be catalogued in the following manner

u, u . u u .
1, "2, n, n+l, "N,
Group IA Group I.IA
(5.6)
u, u, ...u u o
1g "2 ng ‘ntlg “Ng
Group IB Group IIB

If all of the functions were distinct, the 2N eleciron singlet under discussion would be

written

¢ = 212N ol2N) {ulA(l) 1) - uy (M) o(N) uy (N+1) BN+ 1) ... uy (2N) BzN)} (5. 7)

-25-

- A ca ™

o L &..q..& vkt ol




HTe Vs 1 s e

o

*

(SPIN OPERATOR METHOD -- APPLICATION TO CONFIGURATION INTERACTION)

Suppose now we set ujA equal to ujB for j going from 1 to n in the singlet
given in (5. 7). Such a change cannot affect the multiplicity of the total wave function.
However, many of the determinants which comprise (5. 7) will vanish as a result of
assigning the same spin to orbitals whose spatial parts are now assumed identical. Of
the non-vanishing determinants, many will differ from others merely by interchanges
of rows and hence these determinants can be combined. The net result of this chnn?e
of spatial orbitals is that the normalization of the resultant singlet is destroyed. O ZN)
must be modified so that the normalization can be preserved under such a change.

(2N) {5 to multiply it by a

It can be shown that the necessary modification of O
constant factor which depends only on the total number of electrons, 2N, and the num-

be of identical orbitals, n. This factor is

Do (N -k |- 1/2
[k§oz—‘“—n - k).'—NT] (5.8)

Once the matrix elements have been reduced to the form of Eq. (5.4), O(ZN)
can be replaced by an equivalent operator for the purpose of taking the matrix com-
ponent. The equivalent operator is obtained by omitting entirely the one-electron op-
erators Si*. Sj' where i and j refer to electrons occupying an orbital which is doubly

2(N-n) _ 4 it operates only on the spin co-

filled. More precisely, this operator is O
ordinates of the electrons in groups IIA and HB This is a valuable result as it ma-
terially reduces the amount of work necessary to find the matrix components. There-
fore, in the case of Mn—O-—Mn the matrix component of the energy between the singlets

. and ,jtl’l configurations can be expressed as

corresponding to the it
<Y HIg> = (N -n+ 1)1/2 <4 (16) ((10) pyIHlp;> (5.9)

where N is 8 and n is equal to the number of doubly filled orbitals which is three.

G. W. Pratt, Jr.
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6. ANTIFERROMAGNETISM

At the present time attempts to give a quantum mechanical description of anti-
ferromagnetism have been largely restricted to the treatment of simple models which
supposedly would show a preference for spins to be oriented antiferromagnetically. A
configuration interaction treatment of the Mntt 02 mn*t system is reported here.
The Mn—Mn distance as determined by x-ray scattering is 4. 426 Ao(l) and it seems
unlikely that the Mn 3d orbitals located about centers this distance apart would overlap
appreciably. This overlap was neglected in this investigation. By considering excited
configurations in which there is an unpaired spin on the oxygen, a spin dependent coupl-
ing will appear which causes the non-overlapping charge distributions associated with
the Mn ions to interact through the oxygen. This is commonly referred to as super-
exchange interaction. (2) The object of this work was to examine the nature of this
coupling to determine whether it would tend to orient the spins of the Mn electrons
ferromagnetically or non-magnetically.

The ground configuration was taken to be two Mn** ions and an O” ion. The
Mn** ion has five 3d electrons outside closed shells and the O~ ion was taken to have a
rare gas configuration. The excited configurations considered were those obtained by
allowing an electron in an orbital associated with the O ionto occupy one of the Mn 3d
orbitals. The only symmetry considered in the work was of the z; type as the ground
state has this symmetry.

The one-eleciron functions used were assumed to be localized and orthonormal
although the results obtained are independent of their exact nature. Table 6-1 shows
the assignment of electrons for the various configurations. The Mn 3d orbitals are de-
noted by: m, = 2(6+), m, =1 (I+). m, =0 (¢), m = -1l (w_), and m, = -2 (6_).
The oxygen orbitals are m, = 1 (P,), m; =0 (Po), m = -1 (P).

The states of maximum multiplicity, S = 5, for each configuration and the
corresponding secular equation was set up. The energy of the lowest S = 5 state was
compared with the energy of the lowest singlet found by constructing one particular
singlet for each configuration and examining the resulting secular equation. Let us con-
sider the choice of this singlet state.

For each configuration there are ten singly occupied orbitals and, therefore,
42 orthogonal singlets. From neutron diffraction studies of MnO, it is thought that the
Mn*! ions can be divided into two sublattices each sublattice being ferromagnetically
coupled:(l) the singlet state most closely resembling this situation is that formed by
combining the two sublattices which are separately in a state of maximum spin to give a
resultant singlet for the entire system. The analogue of this picture in the model being
considered here is for the two Mn ions to be each in a state of maximum multiplicity
and for these two S = 5/2 systems to combine to give a singlet fcr the ground configura-
tion. The singlet for each excited configuration was formed by the combination of two
S = 5/2 systems. As it is only possible to form one independent singlet in this manner,

=27
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Table 6-1
. %, %_ o P, P, P_ ot w ' w85 &
¥, 1 1 1 2 2 2 1 1 1 1 1
v, 1 1 1 2 2 1 1 1 1 1 1
¥y 1 1 1 2 2 1 1 1 1 2 1
¢4 1 2 1 2 2 1 1 1 1 1 1
Vg 1 1 1 2 2 1 1 2 1 1 1
Ve 2 1 1 2 1 2 1 1 1 1 1
¥, 1 1 1 2 1 2 1 1 2 1 1
bg 1 1 1 2 1 2 1 1 1 1 1
L 1 1 1 2 1 2 1 1 1 1 2
Y10 1 1 2 1 2 2 1 1 1 1 1
LT 1 1 1 1 2 2 2 1 1 1 1

for each configurationone S = 5 and one S = 0 state was considered.

The states which are even with respect to a reflection in a plane perpendicular

to the symmetry axis and passing through the oxygen are:

8,5 =y

8.8 =4, 44,

$,5 =4yt 4

85 = v+ ¥y e-n
85 = ¥g + ¥

85 = b+ 4y

From these six states the states which have the + symmetry with respect to reflection

in a plane containing the symmetry axis of the model can be formed. These four states

are:

(6.2)

[
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I A S 7 A
(6. 2) con'd.

a8 .
¢y =85 ¥t ¥,

The S = 5and S = 0 states corresponding to these four Z+ states were set up
and the corresponding secular equations written down. The S = 5 states were handled
by conventional methods in that the states \pi(S = 5) are just a single determinant.

The singlet states ¢i(s = 0) are, however, much more complicated as these singlets
are each expressed as a linear combination of 252 determinants. It would be an enor-
mous task to compute the matrix components of the energy for these states by the cus-
tomary procedures. These matrix components were found by the spin operator method
reported in the preceding Quarterly Progress Report. The essence of this method is
that one can construct a state of definite multiplicity by operating on a single determi-
nant of one-electron space-spin orbitals with an operator which is essentially a poly-
nomicl the elements of which are step-up and step-down spin operators taken to vari-
cus powers. This operator has the properties that it is hermetian, it commutes with
a spin free Hamiltonian, it commutes with the Sz operator, it commutes with the anti-
symmetrizing operator, and its squa—e is equal to a constant times itself. These prop-
erties allow one to use the operator to take matrix components of the Hamiltonain be-
tween singlets corresponding to all configurations. (3) Some of the details involved are
given in another section of the current Progress Report.

In terms of the spin operator O and the antisymmetrizing operator A, we

can write the four lz; states as

‘l(s = 0) = Aopl
$,(5=10) = AO(p, + p3 *+ Pg *+ Pyg)

(6. 3)
$3(S = 0) = AO(p, + pg *+ Pg *+ P7)

#4(8=0) = AOlp g+ p),)

where the p, are spin product functions referring to the various configurations.
Py = 8,(1)a(1)8_(2)a(2) %,(3) a(3) »_(4) a(4) 5(5) a(5) P_(6) a(6) P_(7) B(7) P, (8) a(8) P,(9) B(9)

P_(10)a(10) P_(11)p(11) *(12) p(12) w_'(13) p(13) »_"(14) p(14) 6_"(15) B(15) 6, '(16) p(16)
(6. 4)
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pz = 6+(l)°(l)

e'(12) p(12)

Py ¢ 6*(1)0(1)

e'(12)p(12) ..

Py = 6,(1)all) ...

e'(12)p(12) ...

Pg = 6*(1)11(1)

e'(12)p(12) ...

P6 = 6*(1)0(1) S

e'(12)p(12) ...

Py = 6+(l)o(l)

«'(12)p(12) . ..

pg = &,(Da(1) ...

e'(12)p(12) ...

Pg = 6+(l)o(l) ..

e'(12)p(12)...

Pio = 6+(l)o(l)

e'(12)p(12) ...

Py, = 5,(1)a(1) ...

e'(12)p(12) ...

. o{5)a(5) P_(6)a(6) P_(7) B(7) P, (8) a(8) P, (9) B(5) P_(10)a(10) 6_(11)B(11)

.. 8,'(16)B(16) (6. 5)

o(5)a(5) P_(6)a(6) P _(7) B(7) P (8)a(8) P (9)B(9) &6_'(10)a(10) P _(11)p(11)

. 6+'(l6)ﬁ(16) (6.6)

#A5)a(5) P_(6) a(6) P_(7) B(7) P, (8) a(8) P, (9) 8(9) P_(10)a(10) x_(11)B(11)

5,'(16) p(16) (6.7)

o{5) a(5) P_(6) a(6) P _(7) B(7) P _(8) a(8) P (9) B(9) w_*(10)a(10) P_(11)p(11)

5,'(16) p(16) (6. 8)

- o(5)a(5) P_(6) a(6) P_(7) B(7) P (8) a(8) » (9) p(9) P_(10) a(10) P_(11) B(11)

6+'(16) p(16) (6.9)

o{5) a(5) P_(6)a(6) P (7) B(7) =, (8) a(8) P, (9) B(9) P_(10)a(10) P_(11)B(11)

5,'(16) p(16) (6. 10)

o{5) a(5) P_(6) a(6) P_(7) B(7) P, (8) a(8) §,,(9) 8(9) P_(10)a(10) P_(11) B(11)

6*'(16)5(16) (6.11)

- o{5)a(5) P _(6)a(6) P _(7) B(7) 8,'(8) a(8) P (9) B(9) P_(10)a(10) P_(11)p(11)

5,'(16) p(16) (6.12)

o{5)a(5) P_(6)a(6) o(7) p(7) P _(8)a(8) P (9)B(9) P_(10)a(10) P_(11)p(11)

6*'(16) p(16) (6.13)

o(5) a(5) #*(6) a(6) P_(7) B(7) P, (8) a(8) P, (9) 8(9) P_(10) a(10) P_(11) B(11)

6+'(l6) p(16) (6.14)
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The matrix elements of the energy for the S = 0 case are given as:

H), = v(AOp IHip)) (6.15)
H, = y(AOpllHlpz + Py + pg * Pg) (6.16)
H,; = v(AOp,IHIp, + pg + Py + Py) (6.17)
H,, = YAOp IHIp,, + p,)) (6.18)
H,, = v(AO {p,_ tpytpgt pg} IHI {pz +tp3tpgt pg} ) (6.19)
H,3 = v(AO {p,_ tpytpgt pg} IHI {p4 +pgtpgt 97} ) (6. 20)
H,, = Y(AO {pz+pz+pa+pg} IHI {Plo*"n}) (6.21)
H33 = y(AO {p4 +pg tpgt p.,} IH| {p4 tpgtpgt p-,} ) (6.22)
Hy, = Y(AO {94 +Pgtpgt p-,} IHI {Plo + p“}) (6. 23)
Hyy = v(AO {plo * p11} Ll {plo i pn}) (6. 24)
v= 6

As an illustration of how the spin operator method works the element
y(AOpZ/H/pS) will be worked out in detail. All of the one-electron orbitals are ortho-
normal and it has been assumed that there is no overlap between the orbitals localized
about the two Mn ions. The spin operator used can be expressed as

N N
o=%1{1+c (s; c, 2 Y o(s;sc st ostye..} (625
{ ' Z \ SkB ! ZjA>k m >nB( JAS“A mpg “B)* }( ‘

B A
where

(N -
= (- yM N - M)
N! M!

Since O 1is to operate on a spin product function, we may speak of the electrons as
being distinguishable. Electrons 1, 3, 4, 5, and 10 comprise set A. Electrons 12,
13, 14, 15, and 16 make up set B, N is the number of electrons in set A or B and
M is the number of B spins assigned to the electrons in set A or the number of a
spins assigned to set B. Therefore, the term

-3]-
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N
cC, 2 S’s

+
lJAkB a kg

in O means that jA runs over the electrons in set A and kB is to run over the elec-
trons in set B. (AOpZ/H/pS) written out is

AO {6+( 1)a(l) 6_(2) a(2) w+(3) a(3) 1_(4) a(4) o(5) a(5) Po(6) a(6) Po(7) 8(7) P+(8) a(8)

P+(9)p(9)P_(10)n(10) 6 _(11)p(11)0*(12) p(12) »_*(13)p(13) :+'(14) p(14) 6 *(15)

8(15) 6‘_'(16)5(16)} IHI {6+(l)u(l)6-(2) a(2) 7,(3)a(3) »_(4)a(4) o(5) a(5) P_(6) (6. 26)

a(6) P_(7) 8(7) P, (8) a(8) P, (9) (9) »_*(10)a(10) P_(11) p(11) ¢*(12) B(12) w_*(13)

B13) ¥, '(14)8(14) 6_(15) p(15) 8, (16) p(16)}

where the orbitals which do not match are underlined.

The 1 from 0 combined with the 1 from A gives for a contribution
(P_(10) 6_(11) | =_*(10) P_(11))
Due to the spatial orthogonality of the orbitals and due to spin orthogonality, the only
contributing permutation from A that can be combined with the 1 from 0 is the

identity permutation.
The term

combined with the 1 from A makes no contribution due to spin orthogonality. The

only term to give a non-zero result is Cl SIO SI3 which must be combined with quo 13

P‘l"o |3 from A, the combination yielding
-C,(6_(11) P_(13)IP_(11) »_'(13))
There will be no other terms entering into this matrix element. Therefore,

(AOp,)IHIpg) = (1 - C,)&_(1) P_(2)IP_(1) w_*(2) (6.27)
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and Cl is -1/5. By proceeding in exactly the same manner, all of the matrix elements
of H for the S = 0 case can be set up.

Let the Hamiltonian matrix for the singlet states be denoted by H, and the
Hamiltonian for the S = 5 states be HS. Then we can set

Hy = Hg + p{4) (6. 28)
The matrix D has the foilowing form

O O O O

o D2 Dy
D= (6. 29)
o D,3; Dj;

o o O D44

Now suppose 400 is the eigenvector of Ho corresponding to the lowest eigen-
value of Ho which we shall call Eo. Then

(WgHIWg) = (4o IH leg) + (44IDly,) (6. 30)
or

E =‘0,S+D

u Yg is the eigenvector of HS corresponding to the lowest eigenvalue ES' then by the
variational principle

(b5 IHldg) € (4glHgl4g) (6.31)
or
Eg <&,
Therefore,
Ey? Eg+D (6. 32)
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- n,( .@ ve speciively. a.ud; for k= 1__,2;»
x%zvedn‘my u33 is abtax%k.d by rep]acmg
., ‘except when 5, and &' occur as the result-

w {2 + (6 (1) P, (2)IP, (1) 7_1(2)

g—;g.(a_m_p_unp_fn n(2) + (6 ()P (2)IP (1) w_(2) +;(_sg(_1>'?f.<2)tp.f< . " (2)

R P P ) @) 6, 1) RIP G0 w, () Lo 0P NP )5, 42)

+ S0 sy, (@31F 1), (2)) +5, (1) B {2)P (1) ni2n + (5, B L2NP () w2
o  (639)
o |
Dy g'l-{:_lergqaksf('i')PU(k)IPO(I)¢k*(k) v -—k>_:l(¢k(1 PP (1) ¢ (K))

};(u(z)p (2, u)g (2) + 2o (1)'p+(-;)_qp+_g1_)_g‘(a.)) ¢ 2((1)P_(2)IP_(1) 0¥(2))

(6. 3__5)

The principal parts of DZ& and D33 are exchange integrals bep.ve'eﬁ the oxygen
: :'ax'bitaic snd the Mn orbitals; these integrals are all positive. The other integrals en-
tering DZ’ and Di; are three-center integrals which cannot be of major imgoﬁ as they

involve the urb'uL,. ol b ith Mn ions. Although these three-center integrals awre by no
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16

5
6 : . : 6
D,, = '5'k=21z(°k ()P _(k)!P_(1)¢, (k) 4 gk§1(¢k(n)p_(k)lp_(mk(kn

0

5
5, L @ (DP0IP (e, (k)

z("k'“)P+(““P+“)°k'(“” +
+ ls_z(p_(l) 6_(2)15_'(1)P_(2)) + 2(s_(1)P_(2)IP (1) 5_'(2)) + 2(6_(1) P (2)IP (1) 5_'(2))

C+E P 8,2)18, (D PL2)) + 28,0 PG2IIP(1)6,(2)) + 26, ()P (NP _(1)5, @)

(6.33)

We mean by ¢\ fork =1, 2, 3, 4, 5; 6,. 6, w, »_, o respectively, and for k = 12,

13, 14, 15, 16; ¢', w_', w ' §_' and 6,' respectively. Dy, is obtained by replacing
6+ by =, and 6*' by v ' everywhere in DZZ except when 6, and §_ ' occur as the result

of a summation.

D

wnj o

23 =26 (1)P_(2)IP_(1)x_(2)) + (6_(1) P_(2)IP (1) %_*(2)) + (6_(1) P, (2)IP (1) %_*(2))

+ 2(6_"(1) P_(2)IP_(1)w (2)) + (5_(1)P@)IP (1) = _(2)) + (5_'(1) P (2)IP,(1) = (2))
+ 2(6,(1) P (2)IP, (1) w, "(2)) +(5,(1) P (2)IP_(1) %, (2)) + (5,(1) P_(2)P_(1) m,(2))

+ 208, () P, (2)IP, (1) %, (2)) +(5,"(1) P (2)IP (1) 7,(2)) + (5,(1) P_(2)IP_(1) w,(2))

(6. 34)
16

5
Dy =3 L (P14 () + §k§1(¢k(l) P_(k)IP (1), (k)

+ R P (2P (1) e'2)) + 2(e(1) P, (2)IP, (1) 0*(2)) + 2(e(1)P_(2)IP_(1) *(2)

(6. 35)

The principal parts of Dzz and D33 are exchange integrals between the oxygen
orbitals and the Mn orbitals; these integrals are all positive. The other integrals en-
tering D‘,_z and D33 are three-center integrals which cannot be of major import as they
involve the orbitals of both Mn ions. Although these three-center integrals are by rno
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means zero, they ere ovcrshadowed by the exchange integrals. Therefore DZZ and
D,y as well as D, are positive. Since D,4 is positive, if D is to have a negative
eigenvalue it must come from the 2 x 2 secular equation involving DzZ' D”, and Dzs'
The secular polynomial coming from this part of D is
x2 - (D,, + Dy + D,,D;; - (D,;)% = 0 (6. 36)

23
We can only have a negative root if DZZD33 < (D‘”)Z since the sum of the roots is
positive. By means of the same arguments which established the positive character
of Dzz and D33 we can see that D‘,-3 is less than either Dzz or D”. Therefore, the D
matrix has no negative roots and consequently the energy of the lowest lying singlet
state as found by this configuraticr. interaction cannot lie below the lowest S = § state.

Up to this point configurations in which an electron on the oxygen ion goes into
a 4s orbital on one of the Mn ions have not been included. The 4s orbitals are more
extended than the 3d's and now we would have to admit exchange integrals between a
4s orbital localized about one Mn ion and the 3d orbitals localized about the other Mn.
By examining the character of DZZ and D33 it appears that the inclusion of these con-
figurations could not lead to a lower lying singlet energy than that of the S = 5 states.

There is one quite definite conclusion which can be drawn from this investiga-
tion. Within the framework of the approximations made here it seems clear that when
an electron is removed from the O ion, leaving an unpaired spin on the oxygen, that
this unpaired spin couples the non-overlapping charge densities on the Mn ions ferro-
magnetically. In view of this result, it appears likely that some other apprcach wouid
be more profitable as an explanation of antiferromagnetism. Of course, it may well
be that the singlet state considered here in no way resembles the antiferromagnetic
state.

Before abandoning this simplified model there is one feature of the configura-
tion interaction treatment that bears examination. That is the fact that this approach
has placed all of the emphasis on the probability amplitudes of the various configura-
tions, the energy being stationary with respect to the variation of these parameters.

It is quite possible that the one-electron wave functions are really quite different for

the singlet and S = 5 states. Furthermore, the use of orthogonal orbitals may force
one to carry out a rather extensive configuration interaction to accurately describe the
correct state of affairs. An investigation is being carried out at present using a mix-
ture of orthogonal and non-orthogonal orbitals but considering only the ground configura-
tion. The energy will be stationary with respect to variations of parameters in the one-
electron functions and these functions will be determined separately for the states of
different multiplicity. Preliminary results obtained for this approach have been en-
couraging.
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7. AN EXTENSION OF HUIND 'S RULE

In the course of configuration interaction calculations with orthogonal orbitals
it is sometimes interesting to know what the multiplicity is of the lowest state of some
given class of states. In general it is impossible to answer this question without cal-
culations. Under one set of circumstances it is possible to answer this question with-
out any calculation. We know of Hund's rule of atomic spectra. Part of this rule states
that of all the levels arising from a given spacial configuration the state of highest mul-
tiplicity lies lowest. A rule similar to this can be proved in general.

We imagine n distinct orthogonal orbitals Uj, Uy, el U We put one elec-
tron in each of these orbitals with either spin up or spin down. This gives rise to 2"
states. These states can be formed into states of definite multiplicity ranging from
singlets (for n even) to states of multiplicity n + 1. (The presence of other orbitais
which are doubly filled does not influence the validity of the following arguments and
can be dropped from conside: ition. ) We shall now show that there is no state that lies
lower than the state of highest multiplicity. We lose no generaiity by restricting our-
selves to all those states with the same 2z component of total spin. Of these only one
corresponds to the state of highest multiplicity whereas for any other multiplicity
there is in general more than one state of this multiplicity. Since states of different
multiplicities cannot interact we are confronted with the problem of diagonalizing for

each multiplicity the matrix of the Hamiltonian

H=%-viz+f(i)+ Y g {1.1)

i>j i
Here f(i) is the one-electron potential and gij is the interelectronic Coulomb interac-
tion. From the Dirac vector model(l) we know that for a given multiplicity the matrix

of the Hamiltonian can be written down very simply.

X, = const. + ? - Jij(pij)Xc (7.2)
j

Here .#’M_ represents the Hamiltonian matrix and (pij)x\r are unitary matrices which
represent the permutatir.n of the spatial coordinates of electron i with those of elec-
tron j. Ji.i is the customary exchange interaction Jij = fui"'(l) uj‘(l) g, ui(z) u.(2)
d1l d?z which is greater than zero since it represents the interaction of a charge den-
sity with itself. We first consider the state of highest multiplicity. This has a Ham-
iltonian matrix which has only one row and one column. The matrices representing
the permutations Pi are matrices which have one row and one column. The matrix
element in all these matrices is unity. Therefore the energy of the state of highest
multiplicity is (apart from the constant in (7. 2) which is the same for all states)
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(AN EXTENSION OF HUND'S RULE)

E:n4>l = - zJij

For any other multiplicity the matrices (pij)\c are of larger size. Let us consider the
diagonal energies of all the states of a given multiplicity. These energies are the di-
agonal elements of (7. 2)

xcc g: B Jij(Pij)oo'

From the unitary nature of the matrices (pij)xa we know that

(P <1

ij)co'

Therefore it is clear from this fact and the fact that Jij > 0 that

En+l = - z:Jij € xo'o' N Z' Jij(Pij)o'o'
We have therefore proved that there is no state lower in energy than the state of highest
multiplicity. One might ask if going through the process of diagonalizing the Hamilton-
ian matrix (7. 2) will push some state lower than the state of highest multiplicity. This
is not the case since in diagonalizing the matrix (7. 2) we use a unitary transformation
which does not destroy the unitary property of (Pij))m' This unitary property was all
that was necessary to prove the theorem. In general, in order to get some state other
than the state of highest multiplicity lying lowest it is necessary to take states into ac-
count which occupy the orbitals in a different manner possibly filling some of our n or-
bitals twice and leaving others empty.

Reference

1. P. A. M. Dirac, Proc. Roy. Soc. (London) A123, 714 (1939). For further references

adnd a complete discussion of this method, see E. M. Corson, Perturbation
Methods in the Quantum Mechanics of n Electron Systems (Hafner Publishing
CTompany, New York, 1950).

G. F. Koster
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3. ON THE Oz GROUND ELECTRONIC WAVE FUNCTION

Microwave absorption measurements on 016 0 gas(l) exhibit a hyperfine

structure. The observed spectrum agrees with that predicted on the basis of a perturb-
ing Hamiltonian of the form b'f § + cl S S is the electron spin angular momentum
of the molecule. and T is the o! nuclear spm (I = 5/2). According to a ineory by

(2,1a)

Frosch and Foley, experimental values of

<P,/r> = f(3—-°°—:z;‘—'l) p(F) dF (8.1)
r

and p(0) can be deduced from those of the parameters b and c. The angle between the
internuclear axis (the z-axis) and the radius vector r from the 017 nucleus to an elec-
tron is denoted by x, and Pz(x) = (l/l)(3xz - 1). <Pz/r3> is the value of Pz/r3 aver-
aged with respect to the number density p(;‘.) of electrons of unpaired spin of the mole-
cule, and p(0) is the value of p at the ()l nucleus. In the following we compare the
experimental values -1.32 and 0. 187 (in atomic units) of <Pz/r > and p(0), respectively,

obtained by Miller and 'I‘ownes(l 1a)

) with values determined by Meckler's 02 normal
3

c¢lectronic wave function.

<Pz/r3> may be defired more precisely as

Pz(cos x )

<P,/r’> fq.t 2 L)es,, §ar (8. 2)

r.
J

where ;j is the spin angular momentum of the _jth electron measure in units of p. The
summation is over the N electrons of the molecule, and the integration is cver the co-
ordinates of all electrons (and is to include summation over spin coordinates). § is a
normalized electronic wave function, the solution of Schrddinger's equation for 0 with
a spin independent Hamiltonian and with fixed nuclei. § is an eigenfunction of '5’ and

9 with eigenvalues S(S + 1) and M =5 §= z s Upon integration over the coordinates
of all electrons but one, and summatlon over all spm coordinates, (8.2) reduces to (8.1)
in which p(r) is defined by

o(F) = qup(x.x_,_, o Xg) 25, WK Xy, .. Xy)dodX, ... dXy  (8.3)

and satisfies jp(?) dr = f&* 25, §dr = 2S. In case ¥ is expressed as a linear com-
bination of determinants of orthonormal orbitals, p(?) is a quadratic form in the orbitals,
the cross-terms (overlap terms) arising from products of determinants differing by one

orbital.

s s R

i
:
3

l.l



(ON THE OZ GROUND ELECTRONIC WAVE FUNCTION)

Quite, generally pir) can be employed to find the expectation value of F:
f}"' F §dr = f(r) p(r) dr, where F is au operator of the type F = zj f(!-'.j) Zsjz'
E.g.. in the theory of neutron-electron magnetic scattering ) such an operator occurs
with f(r) = %eiK " T where K is the neutron scattering vector.

3)

. . S : g -
this level by a linear combination of nine symmetry states of 32 symmetry, each a

The normal O, electronic level is a 32 “. Meckler'”’/ approximates ¢ for

linear combination of deterriinants of orthonormal orbitals, these orbitals being sym-

metry orbitals (LCAO molecular orbitals) from one configuration. We write Meckier's

P as
i
= 8.4
I = 2 c, 9, (8. 4)
p=a
where, in terms of the determinants specified in Table 8-1, the symmetry states ¢“ are
given by
¢, =3A+B-C-D)
1
=-(B+C-A-D
o = )
o =23 E G -F-H+J+K-1-L) (8.5)
¢h=Z'3/Z(F+G-E-H+I+K-J~L)
é. = 2'3/2(E+F-G-H+I+J-K-L)

and the one-determinant symmetry states ¢ _, éq ¢e' and ¢f‘ The coefficients ¢ as a
fuaction of R are given by Meckler:>) The result of inserting (8. 4) into (8. 3) is, in

terms of Meckler's symmetry orbitals (see Table 8-1),

. 2 (8. 6)

- 2 2
p(r) = Cilegl” + Coxgl™ + Cylx,l™ + Clé,

where
C,=atp +y-56
C,=a+p -y + 6

2 25 5 2
+2|ccl +..|ce| +a-pB+y+ b

@]
]

+
Ica cbl
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(ON THE OZ GROUND ELECTRONIC WAVE FUNCTION)

Table 8-1

Determinants of the symmetry states*

Zpag chu prg prg Zpr 2pm,
% Xo X4 X_ %, $_
A + - + - + - + +
B + - + - + + + =
C + - + - - + + +
D + - + - + + - +
E + + ¢ + - + - =
F + + - + - + - +
G + - + + - + - +
H - + + + - + - +
I + + + - - + + -
J + + + - + - 4
K + - + - + + + -
L - + + - + + + -
R + - + + + - + -
¢d + - + - + - + +
¢e + - + + + - + -
¢ + - + - + - + +
*The normalized determinants A, ..., $¢ with Mg = 1 are defined by the symmetry or-
bitals on the principal diagonal; these c0151st o? filled 180 and 2s¢ orbitals accounting

for eight of the sixteen electrons, the remaining orbitals being specified by the above
table, a + or - entry indicating that the space orbital is occupied by an electron with
+ or - spin. The space orbitals are labeled both in standard notation and in Meckler's

notation. Meckler lists the nine 32 " symmetry states as eigenfunctions o